Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 217
Filtre
1.
Phytomedicine ; 78: 153296, 2020 Nov.
Article Dans Anglais | MEDLINE | ID: covidwho-1267880

Résumé

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has extensively and rapidly spread in the world, causing an outbreak of acute infectious pneumonia. However, no specific antiviral drugs or vaccines can be used. Phillyrin (KD-1), a representative ingredient of Forsythia suspensa, possesses anti-inflammatory, anti-oxidant, and antiviral activities. However, little is known about the antiviral abilities and mechanism of KD-1 against SARS-CoV-2 and human coronavirus 229E (HCoV-229E). PURPOSE: The study was designed to investigate the antiviral and anti-inflammatory activities of KD-1 against the novel SARS-CoV-2 and HCoV-229E and its potential effect in regulating host immune response in vitro. METHODS: The antiviral activities of KD-1 against SARS-CoV-2 and HCoV-229E were assessed in Vero E6 cells using cytopathic effect and plaque-reduction assay. Proinflammatory cytokine expression levels upon infection with SARS-CoV-2 and HCoV-229E infection in Huh-7 cells were measured by real-time quantitative PCR assays. Western blot assay was used to determine the protein expression of nuclear factor kappa B (NF-κB) p65, p-NF-κB p65, IκBα, and p-IκBα in Huh-7 cells, which are the key targets of the NF-κB pathway. RESULTS: KD-1 could significantly inhibit SARS-CoV-2 and HCoV-229E replication in vitro. KD-1 could also markedly reduce the production of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, MCP-1, and IP-10) at the mRNA levels. Moreover, KD-1 could significantly reduce the protein expression of p-NF-κB p65, NF-κB p65, and p-IκBα, while increasing the expression of IκBα in Huh-7 cells. CONCLUSIONS: KD-1 could significantly inhibit virus proliferation in vitro, the up-regulated expression of proinflammatory cytokines induced by SARS-CoV-2 and HCoV-229E by regulating the activity of the NF-кB signaling pathway. Our findings indicated that KD-1 protected against virus attack and can thus be used as a novel strategy for controlling the coronavirus disease 2019.


Sujets)
Anti-inflammatoires/pharmacologie , Antiviraux/pharmacologie , Betacoronavirus/effets des médicaments et des substances chimiques , Coronavirus humain 229E/effets des médicaments et des substances chimiques , Infections à coronavirus , Glucosides/pharmacologie , Facteur de transcription NF-kappa B/métabolisme , Pandémies , Pneumopathie virale , Animaux , COVID-19 , Chlorocebus aethiops , Coronavirus/effets des médicaments et des substances chimiques , Infections à coronavirus/métabolisme , Infections à coronavirus/virologie , Cytokines/métabolisme , Forsythia/composition chimique , Humains , Phytothérapie , Extraits de plantes/pharmacologie , Pneumopathie virale/métabolisme , Pneumopathie virale/virologie , SARS-CoV-2 , Syndrome respiratoire aigu sévère/virologie , Transduction du signal/effets des médicaments et des substances chimiques , Cellules Vero , Réplication virale/effets des médicaments et des substances chimiques
2.
JCI Insight ; 7(11)2022 06 08.
Article Dans Anglais | MEDLINE | ID: covidwho-1807764

Résumé

COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19-associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19-induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.


Sujets)
, COVID-19 , Cytokines , Inhibiteurs des Janus kinases , Maladies du rein , Apolipoprotéine L1/génétique , Azétidines/pharmacologie , COVID-19/métabolisme , Cytokines/métabolisme , Cellules endothéliales/métabolisme , Humains , Inhibiteurs des Janus kinases/pharmacologie , Janus kinases/métabolisme , Maladies du rein/traitement médicamenteux , Maladies du rein/métabolisme , Maladies du rein/virologie , Organoïdes/métabolisme , Purines/pharmacologie , Pyrazoles/pharmacologie , SARS-CoV-2/isolement et purification , Facteurs de transcription STAT/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Sulfonamides/pharmacologie
3.
ACS Appl Bio Mater ; 5(2): 483-491, 2022 02 21.
Article Dans Anglais | MEDLINE | ID: covidwho-1805546

Résumé

Interleukin-mediated deep cytokine storm, an aggressive inflammatory response to SARS-CoV-2 virus infection in COVID-19 patients, is correlated directly with lung injury, multi-organ failure, and poor prognosis of severe COVID-19 patients. Curcumin (CUR), a phenolic antioxidant compound obtained from turmeric (Curcuma longa L.), is well-known for its strong anti-inflammatory activity. However, its in vivo efficacy is constrained due to poor bioavailability. Herein, we report that CUR-encapsulated polysaccharide nanoparticles (CUR-PS-NPs) potently inhibit the release of cytokines, chemokines, and growth factors associated with damage of SARS-CoV-2 spike protein (CoV2-SP)-stimulated liver Huh7.5 and lung A549 epithelial cells. Treatment with CUR-PS-NPs effectively attenuated the interaction of ACE2 and CoV2-SP. The effects of CUR-PS-NPs were linked to reduced NF-κB/MAPK signaling which in turn decreased CoV2-SP-mediated phosphorylation of p38 MAPK, p42/44 MAPK, and p65/NF-κB as well as nuclear p65/NF-κB expression. The findings of the study strongly indicate that organic NPs of CUR can be used to control hyper-inflammatory responses and prevent lung and liver injuries associated with CoV2-SP-mediated cytokine storm.


Sujets)
Anti-inflammatoires/pharmacologie , Curcumine/pharmacologie , Syndrome de libération de cytokines/prévention et contrôle , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Facteur de transcription NF-kappa B/métabolisme , Nanoparticules/composition chimique , Transduction du signal/effets des médicaments et des substances chimiques , Glycoprotéine de spicule des coronavirus/antagonistes et inhibiteurs , Angiotensin-converting enzyme 2/métabolisme , Anti-inflammatoires/pharmacocinétique , Survie cellulaire/effets des médicaments et des substances chimiques , Chimiokines/biosynthèse , Curcumine/composition chimique , Curcumine/pharmacocinétique , Cytokines/biosynthèse , Humains , Protéines et peptides de signalisation intercellulaire/biosynthèse , Phosphorylation , Glycoprotéine de spicule des coronavirus/physiologie
4.
Bioengineered ; 12(1): 2274-2287, 2021 12.
Article Dans Anglais | MEDLINE | ID: covidwho-1769071

Résumé

Xuebijing Injection have been found to improve the clinical symptoms of COVID-19 and alleviate disease severity, but the mechanisms are currently unclear. This study aimed to investigate the potential molecular targets and mechanisms of the Xuebijing injection in treating COVID-19 via network pharmacology and molecular docking analysis. The main active ingredients and therapeutic targets of the Xuebijing injection, and the pathogenic targets of COVID-19 were screened using the TCMSP, UniProt, and GeneCard databases. According to the 'Drug-Ingredients-Targets-Disease' network built by STRING and Cytoscape, AKT1 was identified as the core target, and baicalein, luteolin, and quercetin were identified as the active ingredients of the Xuebijing injection in connection with AKT1. R language was used for enrichment analysis that predict the mechanisms by which the Xuebijing injection may inhibit lipopolysaccharide-mediated inflammatory response, modulate NOS activity, and regulate the TNF signal pathway by affecting the role of AKT1. Based on the results of network pharmacology, a molecular docking was performed with AKT1 and the three active ingredients, the results indicated that all three active ingredients could stably bind with AKT1. These findings identify potential molecular mechanisms by which Xuebijing Injection inhibit COVID-19 by acting on AKT1.


Sujets)
Antiviraux/administration et posologie , , COVID-19/métabolisme , Médicaments issus de plantes chinoises/administration et posologie , SARS-CoV-2 , Antiviraux/pharmacocinétique , Antiviraux/pharmacologie , Génie biomédical , Médicaments issus de plantes chinoises/pharmacocinétique , Médicaments issus de plantes chinoises/pharmacologie , Flavanones/administration et posologie , Humains , Injections , Lutéoline/administration et posologie , Simulation de docking moléculaire , Pandémies , Liaison aux protéines , Cartes d'interactions protéiques , Protéines proto-oncogènes c-akt/composition chimique , Protéines proto-oncogènes c-akt/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Quercétine/administration et posologie , Transduction du signal/effets des médicaments et des substances chimiques
5.
Mol Med Rep ; 25(4)2022 04.
Article Dans Anglais | MEDLINE | ID: covidwho-1753714

Résumé

Aberrant TGF­ß/Smad7 signaling has been reported to be an important mechanism underlying the pathogenesis of ulcerative colitis. Therefore, the present study aimed to investigate the effects of a number of potential anti­colitis agents on intestinal epithelial permeability and the TGF­ß/Smad7 signaling pathway in an experimental model of colitis. A mouse model of colitis was first established before anti­TNF­α and 5­aminosalicyclic acid (5­ASA) were administered intraperitoneally and orally, respectively. Myeloperoxidase (MPO) activity, histological index (HI) of the colon and the disease activity index (DAI) scores were then detected in each mouse. Transmission electron microscopy (TEM), immunohistochemical and functional tests, including Evans blue (EB) and FITC­dextran (FD­4) staining, were used to evaluate intestinal mucosal permeability. The expression of epithelial phenotype markers E­cadherin, occludin, zona occludens (ZO­1), TGF­ß and Smad7 were measured. In addition, epithelial myosin light chain kinase (MLCK) expression and activity were measured. Anti­TNF­α and 5­ASA treatments was both found to effectively reduce the DAI score and HI, whilst decreasing colonic MPO activity, plasma levels of FD­4 and EB permeation of the intestine. Furthermore, anti­TNF­α and 5­ASA treatments decreased MLCK expression and activity, reduced the expression of Smad7 in the small intestine epithelium, but increased the expression of TGF­ß. In mice with colitis, TEM revealed partial epithelial injury in the ileum, where the number of intercellular tight junctions and the expression levels of E­cadherin, ZO­1 and occludin were decreased, all of which were alleviated by anti­TNF­α and 5­ASA treatment. In conclusion, anti­TNF­α and 5­ASA both exerted protective effects on intestinal epithelial permeability in an experimental mouse model of colitis. The underlying mechanism may be mediated at least in part by the increase in TGF­ß expression and/or the reduction in Smad7 expression, which can inhibit epithelial MLCK activity and in turn reduce mucosal permeability during the pathogenesis of ulcerative colitis.


Sujets)
Rectocolite hémorragique/métabolisme , Protéine Smad7/génétique , Protéine Smad7/métabolisme , Facteur de croissance transformant bêta/génétique , Facteur de croissance transformant bêta/métabolisme , Animaux , Cadhérines/métabolisme , Rectocolite hémorragique/induit chimiquement , Côlon/anatomopathologie , Sulfate dextran/toxicité , Modèles animaux de maladie humaine , Femelle , Muqueuse intestinale/effets des médicaments et des substances chimiques , Muqueuse intestinale/anatomopathologie , Muqueuse intestinale/ultrastructure , Mâle , Mésalazine/administration et posologie , Souris de lignée C57BL , Myosin-Light-Chain Kinase/métabolisme , Occludine/métabolisme , Myeloperoxidase/effets des médicaments et des substances chimiques , Indice de gravité de la maladie , Transduction du signal/effets des médicaments et des substances chimiques , Jonctions serrées/métabolisme , Facteur de nécrose tumorale alpha/antagonistes et inhibiteurs , Protéine-1 de la zonula occludens/métabolisme
6.
Front Immunol ; 13: 829474, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1731781

Résumé

The SARS-CoV-2 infection triggers host kinases and is responsible for heavy phosphorylation in the host and also in the virus. Notably, phosphorylations in virus were achieved using the host enzyme for its better survival and further mutations. We have attempted to study and understand the changes that happened in phosphorylation during and post SARS-CoV-2 infection. There were about 70 phosphorylation sites detected in SARS-CoV-2 viral proteins including N, M, S, 3a, and 9b. Furthermore, more than 15,000 host phosphorylation sites were observed in SARS-CoV-2-infected cells. SARS-CoV-2 affects several kinases including CMGC, CK2, CDK, PKC, PIKFYVE, and EIF2AK2. Furthermore, SARS-CoV-2 regulates various signaling pathways including MAPK, GFR signaling, TGF-ß, autophagy, and AKT. These elevated kinases and signaling pathways can be potential therapeutic targets for anti-COVID-19 drug discovery. Specific inhibitors of these kinases and interconnected signaling proteins have great potential to cure COVID-19 patients and slow down the ongoing COVID-19 pandemic.


Sujets)
Antiviraux/usage thérapeutique , , Phosphorylation/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques , Humains , Transduction du signal/effets des médicaments et des substances chimiques
7.
Drug Discov Today ; 27(3): 848-856, 2022 03.
Article Dans Anglais | MEDLINE | ID: covidwho-1729681

Résumé

Coronavirus disease 2019 (COVID-19) has emerged as a serious threat to global health. The disregulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) cell signaling pathway observed in patients with COVID-19 has attracted attention for the possible use of specific inhibitors of this pathway for the treatment of the disease. Here, we review emerging data on the involvement of the PI3K/Akt/mTOR pathway in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the clinical studies investigating its tailored inhibition in COVID-19. Current in silico, in vitro, and in vivo data convergently support a role for the PI3K/Akt/mTOR pathway in COVID-19 and suggest the use of specific inhibitors of this pathway that, by a combined mechanism entailing downregulation of excessive inflammatory reactions, cell protection, and antiviral effects, could ameliorate the course of COVID-19.


Sujets)
Antiviraux/pharmacologie , , Phosphatidylinositol 3-kinases/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Protéines proto-oncogènes c-akt/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Sérine-thréonine kinases TOR/métabolisme , Animaux , COVID-19/métabolisme , Humains
8.
Viruses ; 12(6)2020 06 10.
Article Dans Anglais | MEDLINE | ID: covidwho-1726021

Résumé

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Sujets)
Antiviraux/pharmacologie , Betacoronavirus/effets des médicaments et des substances chimiques , Infections à coronavirus/traitement médicamenteux , Pneumopathie virale/traitement médicamenteux , Animaux , Antigènes viraux/immunologie , Betacoronavirus/immunologie , Betacoronavirus/métabolisme , COVID-19 , Chlorocebus aethiops , Infections à coronavirus/virologie , Humains , Interférons/métabolisme , Lipogenèse/effets des médicaments et des substances chimiques , Pandémies , Pneumopathie virale/virologie , SARS-CoV-2 , Transduction du signal/effets des médicaments et des substances chimiques , Cellules Vero , Charge virale/effets des médicaments et des substances chimiques , Méthode des plages virales , Réplication virale/effets des médicaments et des substances chimiques
9.
Molecules ; 27(4)2022 Feb 21.
Article Dans Anglais | MEDLINE | ID: covidwho-1715568

Résumé

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Sujets)
Flavonoïdes/pharmacologie , Protéines du choc thermique HSP70/antagonistes et inhibiteurs , Protéines du choc thermique HSP90/antagonistes et inhibiteurs , Nitric oxide synthase type III/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Animaux , Relation dose-effet des médicaments , Flavonoïdes/administration et posologie , Flavonoïdes/composition chimique , Humains , Nanoparticules de magnétite/composition chimique , Nanoparticules de magnétite/ultrastructure , Cartographie d'interactions entre protéines
10.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article Dans Anglais | MEDLINE | ID: covidwho-1715401

Résumé

Obesity is an increasingly severe public health problem, which brings huge social and economic burdens. Increased body adiposity in obesity is not only tightly associated with type 2 diabetes, but also significantly increases the risks of other chronic diseases including cardiovascular diseases, fatty liver diseases and cancers. Adipogenesis describes the process of the differentiation and maturation of adipocytes, which accumulate in distributed adipose tissue at various sites in the body. The major functions of white adipocytes are to store energy as fat during periods when energy intake exceeds expenditure and to mobilize this stored fuel when energy expenditure exceeds intake. Brown/beige adipocytes contribute to non-shivering thermogenesis upon cold exposure and adrenergic stimulation, and thereby promote energy consumption. The imbalance of energy intake and expenditure causes obesity. Recent interest in epigenetics and signaling pathways has utilized small molecule tools aimed at modifying obesity-specific gene expression. In this review, we discuss compounds with adipogenesis-related signaling pathways and epigenetic modulating properties that have been identified as potential therapeutic agents which cast some light on the future treatment of obesity.


Sujets)
Adipogenèse/effets des médicaments et des substances chimiques , Agents antiobésité/pharmacologie , Obésité/traitement médicamenteux , Adiposité/effets des médicaments et des substances chimiques , Animaux , Métabolisme énergétique/effets des médicaments et des substances chimiques , Humains , Obésité/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Thermogenèse/effets des médicaments et des substances chimiques
11.
J Virol ; 96(4): e0162221, 2022 02 23.
Article Dans Anglais | MEDLINE | ID: covidwho-1706888

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can induce mild to life-threatening symptoms. Especially individuals over 60 years of age or with underlying comorbidities, including heart or lung disease and diabetes, or immunocompromised patients are at a higher risk. Fatal multiorgan damage in coronavirus disease 2019 (COVID-19) patients can be attributed to an interleukin-6 (IL-6)-dominated cytokine storm. Consequently, IL-6 receptor (IL-6R) monoclonal antibody treatment for severe COVID-19 cases has been approved for therapy. High concentrations of soluble IL-6R (sIL-6R) were found in COVID-19 intensive care unit patients, suggesting the involvement of IL-6 trans-signaling in disease pathology. Here, in analogy to bispecific antibodies (bsAbs), we developed the first bispecific IL-6 trans-signaling inhibitor, c19s130Fc, which blocks viral infection and IL-6 trans-signaling. c19s130Fc is a designer protein of the IL-6 trans-signaling inhibitor cs130 fused to a single-domain nanobody directed against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. c19s130Fc binds with high affinity to IL-6:sIL-6R complexes as well as the spike protein of SARS-CoV-2, as shown by surface plasmon resonance. Using cell-based assays, we demonstrate that c19s130Fc blocks IL-6 trans-signaling-induced proliferation and STAT3 phosphorylation in Ba/F3-gp130 cells as well as SARS-CoV-2 infection and STAT3 phosphorylation in Vero cells. Taken together, c19s130Fc represents a new class of bispecific inhibitors consisting of a soluble cytokine receptor fused to antiviral nanobodies and principally demonstrates the multifunctionalization of trans-signaling inhibitors. IMPORTANCE The availability of effective SARS-CoV-2 vaccines is a large step forward in managing the pandemic situation. In addition, therapeutic options, e.g., monoclonal antibodies to prevent viral cell entry and anti-inflammatory therapies, including glucocorticoid treatment, are currently developed or in clinical use to treat already infected patients. Here, we report a novel dual-specificity inhibitor to simultaneously target SARS-CoV-2 infection and virus-induced hyperinflammation. This was achieved by fusing an inhibitor of viral cell entry with a molecule blocking IL-6, a key mediator of SARS-CoV-2-induced hyperinflammation. Through this dual action, this molecule may have the potential to efficiently ameliorate symptoms of COVID-19 in infected individuals.


Sujets)
, COVID-19 , Récepteur gp130 de cytokines , Interleukine-6/métabolisme , Protéines de fusion recombinantes , Transduction du signal/effets des médicaments et des substances chimiques , Anticorps à domaine unique , Glycoprotéine de spicule des coronavirus/métabolisme , Animaux , COVID-19/métabolisme , Chlorocebus aethiops , Récepteur gp130 de cytokines/composition chimique , Récepteur gp130 de cytokines/génétique , Humains , Protéines de fusion recombinantes/composition chimique , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/pharmacologie , Anticorps à domaine unique/composition chimique , Anticorps à domaine unique/génétique , Anticorps à domaine unique/pharmacologie , Cellules Vero
12.
Aging (Albany NY) ; 14(3): 1110-1127, 2022 02 04.
Article Dans Anglais | MEDLINE | ID: covidwho-1675399

Résumé

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has induced a worldwide pandemic since early 2020. COVID-19 causes pulmonary inflammation, secondary pulmonary fibrosis (PF); however, there are still no effective treatments for PF. The present study aimed to explore the inhibitory effect of dihydroartemisinin (DHA) on pulmonary inflammation and PF, and its molecular mechanism. Morphological changes and collagen deposition were analyzed using hematoxylin-eosin staining, Masson staining, and the hydroxyproline content. DHA attenuated early alveolar inflammation and later PF in a bleomycin-induced rat PF model, and inhibited the expression of interleukin (IL)-1ß, IL-6, tumor necrosis factor α (TNFα), and chemokine (C-C Motif) Ligand 3 (CCL3) in model rat serum. Further molecular analysis revealed that both pulmonary inflammation and PF were associated with increased transforming growth factor-ß1 (TGF-ß1), Janus activated kinase 2 (JAK2), and signal transducer and activator 3(STAT3) expression in the lung tissues of model rats. DHA reduced the inflammatory response and PF in the lungs by suppressing TGF-ß1, JAK2, phosphorylated (p)-JAK2, STAT3, and p-STAT3. Thus, DHA exerts therapeutic effects against bleomycin-induced pulmonary inflammation and PF by inhibiting JAK2-STAT3 activation. DHA inhibits alveolar inflammation, and attenuates lung injury and fibrosis, possibly representing a therapeutic candidate to treat PF associated with COVID-19.


Sujets)
Artémisinines/usage thérapeutique , Pneumopathie infectieuse/prévention et contrôle , Fibrose pulmonaire/prévention et contrôle , Animaux , Artémisinines/pharmacologie , Kinase Janus-2/antagonistes et inhibiteurs , Mâle , Rats , Rat Wistar , Facteur de transcription STAT-3/antagonistes et inhibiteurs , Transduction du signal/effets des médicaments et des substances chimiques
13.
Front Immunol ; 12: 769011, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1650341

Résumé

Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein-protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K-AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible "dangerous liaison" between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.


Sujets)
Anti-inflammatoires/métabolisme , Antioxydants/métabolisme , Antiviraux/métabolisme , Asthme/épidémiologie , Asthme/métabolisme , COVID-19/épidémiologie , COVID-19/métabolisme , Facteurs immunologiques/métabolisme , Lutéoline/métabolisme , SARS-CoV-2/métabolisme , Anti-inflammatoires/composition chimique , Antioxydants/composition chimique , Antiviraux/composition chimique , Comorbidité , Biologie informatique/méthodes , Découverte de médicament/méthodes , Humains , Facteurs immunologiques/composition chimique , Interleukine-6/métabolisme , Lutéoline/composition chimique , Simulation de docking moléculaire , Cartes d'interactions protéiques/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Sérum-albumine humaine/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Facteur de nécrose tumorale alpha/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme , Facteur de croissance endothéliale vasculaire de type A/métabolisme
14.
JCI Insight ; 7(2)2022 01 25.
Article Dans Anglais | MEDLINE | ID: covidwho-1649609

Résumé

Cellular and molecular mechanisms driving morbidity following SARS-CoV-2 infection have not been well defined. The receptor for advanced glycation end products (RAGE) is a central mediator of tissue injury and contributes to SARS-CoV-2 disease pathogenesis. In this study, we temporally delineated key cell and molecular events leading to lung injury in mice following SARS-CoV-2 infection and assessed efficacy of therapeutically targeting RAGE to improve survival. Early following infection, SARS-CoV-2 replicated to high titers within the lungs and evaded triggering inflammation and cell death. However, a significant necrotic cell death event in CD45- populations, corresponding with peak viral loads, was observed on day 2 after infection. Metabolic reprogramming and inflammation were initiated following this cell death event and corresponded with increased lung interstitial pneumonia, perivascular inflammation, and endothelial hyperplasia together with decreased oxygen saturation. Therapeutic treatment with the RAGE antagonist FPS-ZM1 improved survival in infected mice and limited inflammation and associated perivascular pathology. Together, these results provide critical characterization of disease pathogenesis in the mouse model and implicate a role for RAGE signaling as a therapeutic target to improve outcomes following SARS-CoV-2 infection.


Sujets)
Benzamides/pharmacologie , , COVID-19 , Poumon , Récepteur spécifique des produits finaux de glycosylation avancée , SARS-CoV-2/physiologie , Transduction du signal/effets des médicaments et des substances chimiques , Réplication virale/effets des médicaments et des substances chimiques , Animaux , COVID-19/génétique , COVID-19/métabolisme , Modèles animaux de maladie humaine , Poumon/métabolisme , Poumon/virologie , Souris , Souris transgéniques , Récepteur spécifique des produits finaux de glycosylation avancée/antagonistes et inhibiteurs , Récepteur spécifique des produits finaux de glycosylation avancée/génétique , Récepteur spécifique des produits finaux de glycosylation avancée/métabolisme
15.
Mol Biol Rep ; 49(3): 2303-2309, 2022 Mar.
Article Dans Anglais | MEDLINE | ID: covidwho-1648443

Résumé

Global vaccination effort and better understanding of treatment strategies provided a ray of hope for improvement in COVID-19 pandemic, however, in many countries, the disease continues to collect its death toll. The major pathogenic mechanism behind severe cases associated with high mortality is the burst of pro-inflammatory cytokines TNF, IL-6, IFNγ and others, resulting in multiple organ failure. Although the exact contribution of each cytokine is not clear, we provide an evidence that the central mediator of cytokine storm and its devastating consequences may be TNF. This cytokine is known to be involved in activated blood clotting, lung damage, insulin resistance, heart failure, and other conditions. A number of currently available pharmaceutical agents such as monoclonal antibodies and soluble TNF receptors can effectively prevent TNF from binding to its receptor(s). Other drugs are known to block NFkB, the major signal transducer molecule used in TNF signaling, or to block kinases involved in downstream activation cascades. Some of these medicines have already been selected for clinical trials, but more work is needed. A simple, rapid, and inexpensive method of directly monitoring TNF levels may be a valuable tool for a timely selection of COVID-19 patients for anti-TNF therapy.


Sujets)
, Syndrome de libération de cytokines/traitement médicamenteux , Pandémies , SARS-CoV-2 , Inhibiteurs du facteur de nécrose tumorale/usage thérapeutique , Marqueurs biologiques , COVID-19/complications , COVID-19/métabolisme , Syndrome de libération de cytokines/étiologie , Syndrome de libération de cytokines/prévention et contrôle , Repositionnement des médicaments , Humains , Interleukine-6/métabolisme , Défaillance multiviscérale/étiologie , Défaillance multiviscérale/prévention et contrôle , Facteur de transcription NF-kappa B/antagonistes et inhibiteurs , Facteur de transcription NF-kappa B/métabolisme , Sélection de patients , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques , Inhibiteurs du facteur de nécrose tumorale/pharmacologie , Facteur de nécrose tumorale alpha/antagonistes et inhibiteurs , Facteur de nécrose tumorale alpha/physiologie
16.
Biochim Biophys Acta Mol Basis Dis ; 1868(3): 166322, 2022 03 01.
Article Dans Anglais | MEDLINE | ID: covidwho-1637812

Résumé

BACKGROUND: Acute kidney injury (AKI) is both a consequence and determinant of outcomes in COVID-19. The kidney is one of the major organs infected by the causative virus, SARS-CoV-2. Viral entry into cells requires the viral spike protein, and both the virus and its spike protein appear in the urine of COVID-19 patients with AKI. We examined the effects of transfecting the viral spike protein of SARS-CoV-2 in kidney cell lines. METHODS: HEK293, HEK293-ACE2+ (stably overexpressing ACE2), and Vero E6 cells having endogenous ACE2 were transfected with SARS-CoV-2 spike or control plasmid. Assessment of gene and protein expression, and syncytia formation was performed, and the effects of quercetin on syncytia formation examined. FINDINGS: Spike transfection in HEK293-ACE2+ cells caused syncytia formation, cellular sloughing, and focal denudation of the cell monolayer; transfection in Vero E6 cells also caused syncytia formation. Spike expression upregulated potentially nephrotoxic genes (TNF-α, MCP-1, and ICAM1). Spike upregulated the cytoprotective gene HO-1 and relevant signaling pathways (p-Akt, p-STAT3, and p-p38). Quercetin, an HO-1 inducer, reduced syncytia formation and spike protein expression. INTERPRETATION: The major conclusions of the study are: 1) Spike protein expression in kidney cells provides a relevant model for the study of maladaptive and adaptive responses germane to AKI in COVID-19; 2) such spike protein expression upregulates HO-1; and 3) quercetin, an HO-1 inducer, may provide a clinically relevant/feasible protective strategy in AKI occurring in the setting of COVID-19. FUNDING: R01-DK119167 (KAN), R01-AI100911 (JPG), P30-DK079337; R01-DK059600 (AA).


Sujets)
COVID-19/métabolisme , Heme oxygenase-1/métabolisme , SARS-CoV-2/pathogénicité , Glycoprotéine de spicule des coronavirus/métabolisme , Animaux , COVID-19/virologie , Lignée cellulaire , Chlorocebus aethiops , Cellules HEK293 , Interactions hôte-pathogène/effets des médicaments et des substances chimiques , Interactions hôte-pathogène/physiologie , Humains , Liaison aux protéines/effets des médicaments et des substances chimiques , Liaison aux protéines/physiologie , Quercétine/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/physiologie , Régulation positive/effets des médicaments et des substances chimiques , Régulation positive/physiologie , Cellules Vero , Pénétration virale/effets des médicaments et des substances chimiques
17.
Virology ; 568: 13-22, 2022 03.
Article Dans Anglais | MEDLINE | ID: covidwho-1639193

Résumé

Heightened inflammatory response is a prominent feature of severe COVID-19 disease. We report that the SARS-CoV-2 ORF3a viroporin activates the NLRP3 inflammasome, the most promiscuous of known inflammasomes. Ectopically expressed ORF3a triggers IL-1ß expression via NFκB, thus priming the inflammasome. ORF3a also activates the NLRP3 inflammasome but not NLRP1 or NLRC4, resulting in maturation of IL-1ß and cleavage/activation of Gasdermin. Notably, ORF3a activates the NLRP3 inflammasome via both ASC-dependent and -independent modes. This inflammasome activation requires efflux of potassium ions and oligomerization between the kinase NEK7 and NLRP3. Importantly, infection of epithelial cells with SARS-CoV-2 similarly activates the NLRP3 inflammasome. With the NLRP3 inhibitor MCC950 and select FDA-approved oral drugs able to block ORF3a-mediated inflammasome activation, as well as key ORF3a amino acid residues needed for virus release and inflammasome activation conserved in the new variants of SARS-CoV-2 isolates across continents, ORF3a and NLRP3 present prime targets for intervention.


Sujets)
COVID-19/métabolisme , COVID-19/virologie , Inflammasomes/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , SARS-CoV-2/physiologie , Transduction du signal , Protéines viroporines/génétique , Séquence d'acides aminés , Antiviraux/pharmacologie , Mort cellulaire , Lignée cellulaire , Interactions hôte-pathogène , Humains , Modèles biologiques , Cadres ouverts de lecture , Potassium/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Protéines viroporines/composition chimique , Protéines viroporines/métabolisme
18.
Pharmacol Res ; 176: 106083, 2022 02.
Article Dans Anglais | MEDLINE | ID: covidwho-1638968

Résumé

The pathogenic hyper-inflammatory response has been revealed as the major cause of the severity and death of the Corona Virus Disease 2019 (COVID-19). Xuanfei Baidu Decoction (XFBD) as one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, shows unique advantages in the control of symptomatic transition from moderate to severe disease states. However, the roles of XFBD to against hyper-inflammatory response and its mechanism remain unclear. Here, we established acute lung injury (ALI) model induced by lipopolysaccharide (LPS), presenting a hyperinflammatory process to explore the pharmacodynamic effect and molecular mechanism of XFBD on ALI. The in vitro experiments demonstrated that XFBD inhibited the secretion of IL-6 and TNF-α and iNOS activity in LPS-stimulated RAW264.7 macrophages. In vivo, we confirmed that XFBD improved pulmonary injury via down-regulating the expression of proinflammatory cytokines such as IL-6, TNF-α and IL1-ß as well as macrophages and neutrophils infiltration in LPS-induced ALI mice. Mechanically, we revealed that XFBD treated LPS-induced acute lung injury through PD-1/IL17A pathway which regulates the infiltration of neutrophils and macrophages. Additionally, one major compound from XFBD, i.e. glycyrrhizic acid, shows a high binding affinity with IL17A. In conclusion, we demonstrated the therapeutic effects of XFBD, which provides the immune foundations of XFBD and fatherly support its clinical applications.


Sujets)
Lésion pulmonaire aigüe/traitement médicamenteux , Médicaments issus de plantes chinoises/pharmacologie , Interleukine-17/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Granulocytes neutrophiles/effets des médicaments et des substances chimiques , Récepteur-1 de mort cellulaire programmée/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Lésion pulmonaire aigüe/métabolisme , Animaux , COVID-19/métabolisme , Lignée cellulaire , Chine , Cytokines/métabolisme , Numération des leucocytes/méthodes , Macrophages/métabolisme , Mâle , Souris , Souris de lignée C57BL , Granulocytes neutrophiles/métabolisme , Cellules RAW 264.7 ,
19.
Inflamm Res ; 71(2): 169-182, 2022 Feb.
Article Dans Anglais | MEDLINE | ID: covidwho-1615450

Résumé

Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.


Sujets)
Maladies auto-immunes/traitement médicamenteux , Inflammation/traitement médicamenteux , Pyruvates/usage thérapeutique , Animaux , Modèles animaux de maladie humaine , Humains , Cellules myéloïdes/effets des médicaments et des substances chimiques , Pyruvates/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Lymphocytes T/effets des médicaments et des substances chimiques
20.
Am J Chin Med ; 49(8): 1965-1999, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1599109

Résumé

Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.


Sujets)
Phénomènes physiologiques cellulaires/effets des médicaments et des substances chimiques , Médicaments issus de plantes chinoises/usage thérapeutique , Fibrose pulmonaire/traitement médicamenteux , Transduction du signal/effets des médicaments et des substances chimiques , Facteur de croissance transformant bêta-1/antagonistes et inhibiteurs , COVID-19/complications , COVID-19/métabolisme , COVID-19/virologie , Humains , Médecine traditionnelle chinoise/méthodes , Phytothérapie/méthodes , Fibrose pulmonaire/complications , Fibrose pulmonaire/métabolisme , SARS-CoV-2/physiologie , Facteur de croissance transformant bêta-1/métabolisme
SÉLECTION CITATIONS
Détails de la recherche